Formal Justification of a Proof System
for Communicating Sequential Processes

KRZYSZTOF R. APT

Université Paris 7, France

Abstract. In a previous paper a proof system dealing with partial correctness of communicating sequential
processes was introduced. Soundness and relative completeness of this system are proved here. It is also

indicated in what way the semantics and the proof system can be extended to deal with the total correctness
of the programs.

Categories and Subject Descriptors: F.3.1 [Logics and Meanings of Programs]: Specifying and Verifying
and Reasoning about Programs—logics of programs

General Terms: Languages, Theory

Additional Key Words and Phrases: Partial correctness, CSP, operational semantics, cooperating proofs,
soundness, relative completeness, total correctness

1. Introduction

In Apt et al. [2] we introduced a proof system in which partial correctness and
deadlock freedom of communicating sequential processes (see Hoare [8]) can be
proved. This system is an appropriate extension of the usual Hoare proof system
which takes care of the special features of CSP programs. The system is a bit unusual
in that some of the axioms, visibly the input and output axioms, allow us to deduce
any postassertion after an I/O command. Even though the soundness of this system
should be intuitively clear once one has grasped the main ideas behind the system,
it is instructive to provide a formal proof of it.

One of the aims of this paper, which can be viewed as a formal justification of
[2], is to present such a proof. We also prove the completeness of the system relative
to the set of all sentences true in the standard model of Peano arithmetic. These
results are counterparts of the corresponding results concerning proof systems for
parallel programs and proved in Owicki [11, 12]. In fact, both the soundness and
completeness results follow the same line of reasoning. The completeness proof is
structured in a way similar to the corresponding proof given in [l], concerning
Owicki’s proof system for parallel programs.

Even though the results we prove here concern partial correctness only, it should
be clear how to modify them to deal with deadlock freedom. The results of this paper
can be extended in two ways. First, by an easy modification of the argument in [1]
we can show that in the correctness proofs we can restrict ourselves to recursive (i.e.,
effectively computable) assertions. Second, by “parameterizing™ the loop invariants

Author’s address: LITP, Université Paris 7, 2 Place Jussieu, 75251 Paris, France.

Permission to copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the ACM copyright notice and the title of the publication
and its date appear, and notice is given that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission.

© 1983 ACM 0004-5411/83/0100-0197 $00.75

Journal of the Association for Computing Machinery, Vol. 30, No. 1, January 1983, pp. 197-216.

198 KRZYSZTOF R. APT

with an integer counter we obtain a proof system which can be used to prove total
correctness of communicating sequential processes and formally studied. We discuss
this issue in the last section of the paper.

The paper is organized as follows. In Section 2 we introduce a fragment of CSP
which we subsequently consider. In Section 3 we define an operational semantics for
the language, and in Section 4 we discuss the proof system considered for CSP. The
soundness of the system is proved in Section 5, and relative completeness in Section
6. Finally, in Section 7 we extend the notions considered here to the case of total
correctness.

Knowledge of [2] is not required to follow the proofs presented here. However, it
is strongly suggested that the reader become acquainted with the intuitive ideas
standing behind the system, which are presented in [2, Sec. 2]. Also, for a proper
understanding of the definitions introduced in the last section, knowledge of [2,
Sec. 4] is needed.

One important aspect of the fragment of CSP considered has been left out of the
considerations. It is the loop exit convention according to which an I/O guarded
repetition command can be also exited when all processes addressed in I/O guards
whose Boolean part is true have terminated (see [2, 8]). This omission was strongly
urged by both referees of the paper. In the original version of the paper we proved
the soundness of the proof system in the case in which this aspect was incorporated.
We also indicated there that contrary to the claim stated in [2], the proof system
there considered is not complete, as there is no way to prove the valid formula,

{true} *[true, P»?x — skip] || *[true, P,?y — skip]{false}.

An omission of the loop exit convention results in simpler proofs dealing with one
proof system only.

2. Preliminaries

The aim of this section is to introduce a fragment of CSP that is a subset of the one
originally defined in [2]. We also introduce semantical notions and fix notation.

Throughout the paper we fix an arbitrary first-order language L with equality. Its
formulas are called assertions and are denoted by the letters p, g, r. Simple variables
are denoted by the letters x, y, z, and expressions by the letter ¢; p[#/x] stands for a
substitution of ¢ for all free occurrences of x in p.

We consider here programs written in a subset of CSP whose expressions are built
up from nonlogical symbols of L. By a parallel program Pi| ---| P, we mean a
parallel composition of component programs or processes. Each process is a sequential
program built up from atomic statements using statement constructors. By an atomic
statement we mean here assignment x := ¢, the skip statement, or an I/O command.
An I/O command can be either an input statement P?x or an output statement P;lt.
The letters a, B are used to denote I/O commands.

Processes or statements are denoted by the letters P, R, S. I/O commands are
usually considered in the context of a parallel composition. If this is the case we say
that an I/O command P;?x (or P;!t) refers to P; or to the Jth process (or addresses P;)
even if the jth process in the parallel composition is denoted by another letter. We
say that the I/O commands « and 8 match if « is taken from the ith process and 8
from the jth process, a refers to the jth process, 3 refers to the ith process, and one
of a, B is an input and the other an output statement.

Boolean expressions are denoted by the letters b, c. We allow Boolean constants
true and false. Statements are built up using the composition operation “;” and

2

Proof System for Communicating Sequential Processes 199

allowing alternative command [0(j = 1, ..., m) b, > R;] and repetitive command
«[0(j=1,...,m) bj— R;].

A variable x occurring in a program S is subject to change if it occurs on a left-
hand side of an assignment within S or in an input statement from S. By definition,
CSP processes are disjoint, which means that a parallel composition Py - - || P, is
syntactically correct if for i, j = 1, ..., n no variable subject to change in P; occurs in
P; (i # j). We also assume that in the context of parallel composition only other
component programs are referred to in I/O commands. All programs considered are
assumed to be syntactically correct. A semantics of these programs is defined formally
in the next section. For an informal definition of their semantics the reader is referred
to [8].

By a correciness formula we mean a construct of the form { p} S{gq} where p, q are
formulas of L and S is a CSP program or a fragment of it. We denote correctness
formulas by the letters ¢, 1.

An interpretation of L consists of a nonempty domain and assigns to each nonlogical
symbol of L a relation or function over its domain of appropriate arity and kind. The
letter J stands for an interpretation.

Given an interpretation J, by a state we mean a function assigning to all variables
of L values from the domain of the interpretation. States are denoted by the letters
o, 7. The notions of a value of an expression ¢ in a state ¢ and truth of a formula p in
a state o (written as =, p(o)) are defined in the usual way. A formula is true under J,
written as =, p, if =, p(o) holds for all states 0. By Tr.; we mean the set of all formulas
of L true under J. For a state o and program S we define o | S to be the restriction
of o to the domain Var(S'), which is the set of all variables occurring in S.

The I/0 guarded selection command [O(j = 1, ..., m) b;, &y — R;] and the I/0O
guarded repetition command *[0(j = 1, ..., m) b;, ¢y — R;] are not included in the
subset considered here. These constructs were allowed in [2] and play an important
role in the original definition of CSP given in [8]. They are, however, omitted here
for the following reasons. They can be defined in the fragment considered here as
[OG=1,..., m) b;, a; — R;] is semantically equivalent to [(j = 1, ..., m) b, —
a;; Ri]and +[0(j = 1, ..., m) b;, a; — R;] is semantically equivalent to *[0(;j = I,
..., m) b = a;; R;] (the latter due to the fact that the loop exit convention is not
considered here). A consequence of these equivalences is that the proof rules dealing
with the I/O guarded commands can be straightforwardly derived from the proofs
rules dealing with the equivalent constructs. As a result, the soundness and complete-
ness proofs presented here hold equally well for an appropriate extension of the proof
system dealing with the I/O guarded commands.

It should be stressed that the equivalence of [O(j = 1, ..., m) b;, & — R;] and
[d(j=1,..., m) b;— a;, R;] holds in the case of partial correctness only as the latter
construct introduces an additional possibility of deadlock.

It should be also noted that the loop exit convention is also omitted in [10], where
a proof system similar to this of [2] is presented.

3. Semantics

In this section we define an operational semantics for the CSP programs we consider.
For each interpretation J and program R we want to define a binary relation on
states M,(R) which gives the input-output semantics of program R under the
interpretation J.

This semantics makes use of the Hennessy-Plotkin [7] idea of considering the “—"
relation between pairs consisting of a program and state.

200 KRZYSZTOF R. APT

Assume a given interpretation J. We first define the relation
(8, 0) > (S, 7)

for S and S’ subprograms of a process. The intuitive meaning of this relation is:
executing S alone for one step in a state ¢ can nondeterministically lead to a state =
with S’ being the remainder of S still to be executed. It is convenient to allow the
empty program E. Then S’ is E if S terminates in 7. We assume that for any S,
E; §=S; E = S. We also assume the meaning of assignment to be known.

We define the above relation by the following clauses:

(i) (skip, o) — (E, o};
(@) (x =1, 0) = (E, Ms(x = 1)(0));
di) (O =1,..., m) b;— R/, 0) = (R, 0) if =sbi(0) (1 = k = m);
i) *0G=1...,m) bj—> Rl o) > (R =[O =1, ..., m) b > R}], o) if
Erbi(o) (1 < k< m),
W) ([0 =1,...,m)bj— R;], 0) = (E, 0) if =jb;(e) for j=1,..., m.

By a history we mean a sequence of records of communications (r.0.c.). A record of
communication is a term introduced in [5]. It stands for a triple (a, i, j) which is
associated with a communication between processes P; and P;: a is the value sent by
P; to P;. The empty history is denoted by e. We use the letter 4 with a possible
subscript to denote a history. /; © hy denotes concatenation of histories 4 and hs.

We now define the relation

(Sl -+ - || Sn, 0) =% (Si[| -+ || 87, 7)

for parallel programs S| ---|| S, and Si]| - -- || S7, history &, and a natural number
k = 0. The intuitive meaning of this relation is: executing S1 || - - - | S» in a state o can
lead in k steps to a state 7 with A recording all communications that took place and
S|l -- || Sn being the remainder of Sy||- - - || S, still to be executed.

The relation is defined by the following clauses:

(1) (Sifl---[18n, 0) =5 (Sa]| -+ || Sn, 0).
(2) If (S, 0) = (Si,7) (1 <i=<n), then

(Sl ++ < [1Sn, 0) =5 (Sul -+ | Sia | ST Sivall « + - | Sy 7).

In this case the progress in execution took place due to the execution of S; alone.
(3) If Si = Pjltand §; = Pi2x (1 < i, j < n), then

(Sill+=+[18n, @) =17 (S| -+ - || Sk, Ms(x = 1)(0)),

where a is the value of 7 in the state o, S}, = S}, for k i, joand S{= Sj=E.

In this case the progress in execution took place by performing the communi-
cation between the ith and jth process. The effect of this communication is equal
to the execution of the corresponding assignment statement.

@) IE(S1]l -+ - [S, o) =% (Si]|--- || Sk, 7), then for any S,

(Sall+- <185 SI -+ Sny 0) =5 (St -+ | S5 S| - || Shy 7).

This clause handles the case of the composition of programs.
(5) If (S, o) =k (8, 00} and (S, a0) —J2 (S, 7), then

(8, 0) =k (S, 7).

Proof System for Communicating Sequential Processes 201
Finally we define the meaning of a parallel program Si | - - - || S, by putting

Ms(S1| - -+ || Sn)(0) = {r:for some history h and k = 0,
(Sill -+ || Sn, o) =% (E] L LE,)}
n times

Note that we did not provide a separate clause for the case of I/O commands.
Their semantics is obtained as a special case of the last definition. We have
Mj(a)(0) = &, which should be interpreted as a statement that an execution of an
I/O command alone does not terminate properly.

The use of histories in the above definition is needed only for the completeness
proof. The explicit counting of steps is not needed in the definition either. It is
however useful in both the soundness and completeness proofs.

For a parallel program P and assertions p, ¢ we say that { p} P{q} is true under J
(=,{p}P{q}) if

Vo, 7 [(Fsp(o) N 7 € Ms(P)(0)) — Frg(n)].

In the subsequent considerations we shall sometimes use the notion of computation.
By a computation we mean here a sequence of elementary steps. Each step is
associated with an execution of a skip or assignment statement, a loop exit, evaluation
of a Boolean expression, or execution of a communication.

4. Proof System

We now present a proof system for the fragment of CSP consiaered. This system was
introduced in [2], to which the reader is referred for additional information about the
need and motivation for various axioms and proof rules. Also, example proofs can
be found there. A different but similar proof system was independently introduced
in [10]. Both proof systems derive from related work on proof systems for parallel
programs by Lamport [9] and Owicki and Gries [13, 14].

To reason within the system about CSP programs, one has first to provide proofs
for component processes and then to deduce properties of a parallel program by
analyzing the proofs for components. First we give axioms and proof rules needed to
generate proofs for component processes. Let C stand for the proof system consisting
of the following axioms and proof rules:

Al. Input

{p}P:2x{q}.
A2. Output

{p}Plt{q}.
A3. Assignment

{plt/x]}x = t{p}.

A4. Skip

{p}skip{p}.

R1. Alternative command

{p N bi}R{q}im1..m .
{py0G=1,...,m bj— R]{q}

202 KRZYSZTOF R. APT

R2. Repetitive command

{p A BRI pli=1,..m .
(p)*0G=1,...,m) b= RI{p A /N1 7b;}

R3. Composition

{p}S1{q}, {q}S2{r}
{p}Sy; Sofry

R4. Consequence
p=p {p}Sigd. 1> g
{p}Sig}

If o/ is a set of assertions and G a proof system, we write &/ ¢ ¢ to indicate that
there exists a proof in G of ¢ which uses as assumptions for the consequence rule
assertions from /.

The subsequent metarule for comparing the proofs for component processes refers
to a special form of these proofs. This special form, called a proof outline (see [14]),
is characterized by the fact that each substatement S of the component program is
preceded and succeeded by an assertion, pre(S) and post(S), respectively. These pre-
and postassertions satisfy certain properties which are listed in the following lemma.

LemMma 1. Let J be an interpretation, and let S be a component program. Then
Trybc { p}S{q} iff there exist assertions pre(R) and post(R) for all subprograms R of
S such that the following formulas are true under J:

@) p— pre(S), post(S) — q;

(i) pre(R) — post(R)[t/x] if R is x = t;

(iii) pre(skip) — post(skip);

(v) pre(R) — pre(Ry), post(Ri) — pre(Rz), post(Rz) — post(R) if R is Ri; Rz;

() pre(R) N\ bj — pre(R)), post(R;) — post(R), for j = 1, ..., m, if R is
Oy=1...,mb— R

(vi) pre(R) N\ bj — pre(R;), post(R;) — pre(R), pre(R) A /\F-, —b; — Post(R), for
J=L...omifRis«[0(j=1,...,m) bj— R;].

ProOF. The proof proceeds by induction on the struction of S. It is a counterpart
of a corresponding lemma from [11]. The details are straightforward and are left to
the reader. [0

This lemma shows that when we are discussing the proofs for component programs,
it will be sufficient to restrict attention to assertions pre(R) and post(R) satisfying the
conditions listed above.

The next concept we need is that of bracketing.

Definition. A process P; is bracketed if the brackets “(” and “)” are interspersed
in its text so that

(1) for each program section (S) (called a bracketed section), S is of the form
S1; @; S» where S; and S, do not contain any I/0 statements, and
(ii) all I/O statements are bracketed.

S1 and S do not need to appear in the definition of bracketing. The completeness
proof shows that it is sufficient to consider bracketed sections of the form (a; S,
where §'is an assignment statement. The reason for introducing brackets is to delimit
program sections within which the global invariant I need not necessarily hold.

Proof System for Communicating Sequential Processes 203

With each proof of { p}P1| - -- || P.{g} we now associate a global invariant I and

appropriate bracketing. The proof rule concerning parallel composition has the
following form.

RS. Parallel composition

proofs of { p;}Pi{g:}, i=1, ..., n, cooperate
(PN Apu AIYP| -+ - | Paf{qu N - Agu AT}

provided no variable free in I is subject to change outside a bracketed section.

We now define when proofs cooperate. Assume a given bracketing of P | - - - || P»
(to which we referred in the clause concerning the free variables of I). We say that
two bracketed sections (S1) and (S») match if they contain matching I/O commands.

Definition. The proofs of the { p;} Pi{q:} (i =1, ..., n) cooperate if

(1) the assertions used in the proof of { p;}P:{q:} have no free variables subject to
change in P; (i # j), and

(i1) {pre(Sy) A pre(Sz) N I}S:1| Sa{post(S1) A post(Sz2) A I} holds for all matching
pairs of bracketed sections (S1) and (S2).

To establish the second clause of cooperation, we use the following additional
axioms and proof rules.

AS. Communication
{true} P;7x || Pilt{x = t},
provided P;?x and P;!t are taken from P, and P;, respectively.
A6. Preservation
(PIS{p).
provided no free variable of p is subject to change in S.

R6. Formation
{p}Sy; Ss{ p1}, {pr}elaf{ p2}, {p2}Se; Si{q}
{P}(S1; a; 82)||(S3; @; Se){q) ’

provided « and & match, S, Sz, S3, and S, do not contain any I/0 commands,
and no variable in S;; S is subject to change in S3; Sy, and vice versa.

Finally, we need the following three rules which are used not only in the
cooperation proofs.

R7. Conjunction

{p)S{q}, (p}S{r)
{p)S{gAry ~

R8. Substitution

{p}S{q}
{plt/z1}S{q}’

provided z does not appear free in S and g.

RY. Auxiliary variables. Let AV be a set of variables such that x € AV implies that
x appears in S’ only in assignments y := ¢, where y € AV. Then if g does not

204 KRZYSZTOF R. APT

contain free any variables from AV and S is obtained from S’ by deleting all
assignments to variables in AV,

(7)Sg)
(5@

This concludes the presentation of our proof system. In the subsequent sections we
call this system T.

5. Soundness

In this section we prove that the proof system T'is sound in the sense of the following
theorem.

SOUNDNESS THEOREM. For any interpretation J and correctness formula ¢, if
Try b=7 ¢, then E=y¢.

Proor. It is difficult to prove the soundness of T directly, because the rule of
parallel composition is in fact a metarule. To resolve this difficulty, we transform T
into an equivalent system 7" which uses the usual notion of proof and is therefore
easier to study.

T" is obtained from T by replacing proof rule R5 by another rule.

Let VC({p}P{q}) (verification conditions for { p}P{q}), where P is a process,
stand for the list of all assertions listed in conditions (i)-(vi) of Lemma 1. Let
Pi|| - - - || P, be a parallel program. Assume a given bracketing of Py || - - - || P.. Con-
sider VC({ p:} Pi{q:}) for i = 1, ..., n which satisfy the disjointness property (i.e.,
assertions from VC({ p:} P:{¢:}) have no free variables subject to change in P; for
i# j). Let Coop({ pi} Pi{g:}i=1,..,n, I) stand for the list of all correctness formulas of
the form

{pre(S1) N pre(Sz) A I}S1] Se{post(S1) A post(Sz) A\ I},

where (S:) and (S;) are some matching bracketed sections. We assume that the
global invariant I satisfies the restriction mentioned in rule R5.
The rule in question has the form

VC({pi} Pi{qi})i=1,....n, Coop({ pi} Pi{qi}i=1,...n, I)
(PN s Apa AIYP| + - | Pu{qa A\ - o= Agn AT}

We call it the combined rule.

Using Lemma 1, it is easy to prove that T'and 7" are indeed equivalent. Instead of
proving soundness of T'we prove soundness of 7.

An axiom which is true under all interpretations will be called valid, and a proof
rule which preserves truth under all interpretations will be called sound.

To prove soundness of 7", it is enough to show that all axioms of T” are valid and
all proof rules are sound. It follows from the fact that 7, in contrast to T, uses the
usual notion of proof.

As the next step in preparation of the proof of the Soundness Theorem we
introduce the following notion. Let § be a subprogram of a process P. By induc-
tion on the structure of P we define a program after(S, P). Informally speaking,
after(S, P) is a remainder of P still to be executed just after the execution of its
subprogram S has terminated, and before(S, P), defined by

before(S, P) = S; after(S, P),

is a remainder of P still to be executed just before the execution of the subprogram
S has started.

Proof System for Communicating Sequential Processes 205
If § = P, then gfter(S, P) = E. Otherwise,
() if Pis[O(j=1,...,m) b;— R;] and S is a subprogram of R; (1 <j < m), then
after(S, P) = after(S, R;);

@) if Pis«[0(j=1,..., m) bj— R;] and S is a subprogram of R; (1 < j < m), then
after(S, P) = after(S, R)); P;
(i) if Pis Sy; S, then if S is a subprogram of Si, then
after(S, P) = after(S, S1); S,

and otherwise,
after(S, P) = after(S, S2).

Assume now a given bracketing of a process P, and let R be a substatement of P.
We say that R is a normal substatement if each bracketed section of P lies either
outside or inside of R. In other words, neither the beginning nor the end of R lies
within a bracketed section of P.

Assuming now a given bracketing of processes P, ..., P,, we say that the pro-
gram Si| - - - || S. is admissible if for each i = 1, ..., n, S; is either before(R, P.) or
after(R, P;) for some normal subprogram R of P;.

For the rest of this section we fix an arbitrary interpretation J. To avoid excessive
notation, we shall write =¢ instead of I=;¢ and .#(- - -) instead of A;(- - +).

We now prove the soundness of the combined rule, which is the most complicated
case in the proof of the Soundness Theorem. Assume that all formulas occurring in
the premise of the rule are true under J. We now wish to prove that the conclusion
of the rule is true under J. To this purpose we first prove the following lemma.

LEMMA 2. Assume that all formulas from VC({ pi}Pi{q:})i=1,...n>
Coop({ pi} Pi{q:}i=1,...n, I) are true under J. Assume that for some states o, 7, k = 0,
history h, and admissible program S, || - - - || S,

(Pi]l«+ || Pa, 0) =% (Sl -+ - || Sa, 7
and
E(p1 A -+ Apa AI)(0).
Thenfori=1,...,n,
(i) if for some normal R, S, is before(R, P;), then =pre(R)(7);

(if) if for some normal R, S; is after(R, P;), then F=post(R)(t);
(i) E=I(r) holds.

The lemma states that whenever control in each process is outside a bracketed
section (which is implied by the admissibility of Si| - - - || S»), then the appropriate
pre- and postassertions and the global invariant I hold.

Proor. The proof proceeds by induction on k.

If k = 0, then ¢ = 7, and each S; is before(P;, P;). The formulas p; — pre(P;) for
i=1,..., nare all among premises of the combined rule and so are assumed to be
true under J. Hence

E(pre(Pi) A -« - N pre(Pr) N I)(7)
holds.

206 KRZYSZTOF R. APT

Now suppose the assumptions of the lemma hold for some k£ > 0, and that by
the induction hypothesis the claim of the lemma holds for all k" < k. For some
Sﬁ, ey S:’n, h1, hz, and 01,

(Pi]l - || Pry @) =1 (S -+ [S7, 00))
and
(81 -+ 1Sh 00) =12 (Sl =+ [Sn, 7). (+%)
There are two cases to consider.
Case I. The program Si| - - - || S» is admissible.
The progress in computation (x) took place either

(1) by executing one step of some S; or
(2) by executing a communication between some S iand S.

We consider these two possibilities in turn.

(1) As a representative case consider the situation when S is before(R, P;), where
Ris[0(j=1, ..., m) bj— R;]. The progress had to take place here by evaluating
some b; (1 <1< m) to true. Clause (iii) from Section 3 applies here, and by the
definition of before, S; is before(Ri, P:) and 7 is 01. By the induction hypothesis,
E=pre(R)(a1). Also =by(a1). The formula pre(R) A b;— pre(R;) is one of the premises
of the combined rule and so assumed to be true under J. Hence F=pre(R;)(o1), and
since o1 = 7, we get F=pre(R;)(r) as desired. The other possibilities for S; require
similar reasoning.

By the induction hypothesis, =I(c1). Since both S| - - || S, and S| ---|| S, are
admissible, the progress in computation within S; took place outside a bracketed
section. By the assumption concerning /, none of its free variables has changed its
value in the computation (**). So FI(r) holds.

(2) Suppose that « and « are the matching I/O commands which were executed.
Then

Si is before(a, P;),
S is before(w, Py),
S: is after(a, P;),
S; is after(a, Pj).

Since both Si| - - - | S»and S1]| - - - || S» are admissible, a and & must both constitute
a bracketed section. By the induction hypothesis,
E(pre(a) A pre(a) A I)(o1),
and by the definition of %, 1 € #(a|&)(a1). The correctness formula
{pre(a) A pre(a) A I'}af a{post(e) A post(a) N\ I},
being a premise of the rule, is assumed to be true under J. Hence
F(post(a) N post(a) N I)(r),
as desired.
Suppose now that S; = S; for some /. Thus / 5 i in case (1) and / # i, j in case (2).

For some normal R, F=pre(R)(o1) (or F=post(R)(01)). By the disjointness property of
VC({p:}Pi{q:}) fori=1, ..., n, a progress in computation of one or two processes

Proof System for Communicating Sequential Processes 207

cannot affect the corresponding pre- and postconditions related to other processes.
Thus Fpre(R)(r) (or Fpost(R)(r)). This settles case I.

Case II. For all S, ..., S7, satisfying (x) and (x*), S1|| - - - || S», is not admissible.

It is easy to see that this assumption and the admissibility of Si|| - - - || S, implies
that in state 7 some process has just terminated an execution of a bracketed section.
Hence at least one communication took place in the computation mentioned in the
formulation of the lemma, that is, 4 is not empty. Let (a, /) be the last element of
h. For some hy we have h = hio(a, i, j). It follows that ith and jth processes are in
state 7 just after an execution of a bracketed section, say R; and Re, respectively. In
other words, S; is after(R., P;) and §; is after(Rz, P;).

We now claim that for some o; and k; < k,

(Pr]| -~ || Pn, 0) —>kis, (S4]l -+ || Sh, 01)
and

(Sl -+ 1S5 a1y =& (Sul+ -+ [, 7)
hold, where

Si= S for 11,],
S{ = before(R:, P.),
S = before(Rz, P)).

Intuitively, the claim states that there exists a computation with history A which
started in state o and reached state 7 in which the last k; steps consisted exclusively
of executing the above mentioned bracketed sections of P; and P;.

The desired computation can be obtained from the original one by deleting from
it all (k,) steps performed by P; and P; after reaching the beginning of the correspond-
ing bracketed sections and then appending them while preserving their order at the
end of the resulting computation. The computation obtained clearly has history A
and also leads to state 7. This is a consequence of the fact that all processes are
disjoint and P; and P; do not communicate with any P, (I # i, j) after having reached
the beginning of the corresponding bracketed sections in the original computation.
Thus changing the order of the computation cannot affect its outcome.

o, is the state reached in the constructed computation after performing k — k;
steps. By the induction hypothesis we now have

E(pre(R:1) A pre(Rz) N I(oy).

The rest of the proof is now the same as in case I(2). This concludes the proof of
Lemma 2. [J

The soundness of the combined rule is now an immediate consequence of
Lemma 2. Suppose that for some states o and 7, =(p1 A\ -++ A p. A I)(0) and
T € M(Py| ---| Pn)o). By Lemma 2, =(post(P1) A .- A post(Pn) /\ I)(t) holds,
as after(P;, P;) is E for i = 1, ..., n. Now, post(P;) — ¢, fori =1, ..., n are all
among premises of the combined rule and are assumed to be true under J. Hence
=(q1 N - -+ A gn A T)(7) holds. Thus we showed that

E(pA - Apu AP - | Pa{qa A -+ gu A T)

holds as desired.

208 KRZYSZTOF R. APT

Validity of axioms of 7" and soundness of other proof rules of 7" are straightfor-
ward to prove. For example, to show the soundness of the formation rule, it is
sufficient to use the reasoning concerning changing the order of the computation
steps which was applied in case II in the proof of Lemma 2. ‘

Note also that the somewhat unusual input and output axioms are valid according
to the semantics of the I/O commands.

This concludes the proof of the soundness theorem. [

6. Relative Completeness

Having proved soundness of 7, we now concentrate on the issue of completeness of
T. Assume that the underlying language L is a countable first-order extension of the
language Lp of Peano arithmetic. Fix an interpretation Jo of L in the domain of
natural numbers which is an extension of the standard interpretation of Lp in natural
numbers. We now show that the proof system T is relatively complete with respect
to Jo. More precisely, we prove the following theorem.

CoMPLETENESS THEOREM. For any correctness formula ¢, if E, ¢, then
Try, b1 ¢. Recall that Try, is the set of all formulas of L true under Jo.

Proor. In the subsequent considerations we shall need to code finite sequences
of natural numbers by natural numbers; (ai, ..., @,) will stand for a code of the
sequence ay, ..., an. If a = {ay, ..., a,), then by definition, acc = (ay, ..., ax, ¢);
{) denotes the code of the empty sequence. We shall implicitly assume various
properties of the functions “(-.-)” and “°,” like their definability by expressions of
L and injectivity. The proofs of these properties can be found in [15].

As in Section 5, in order to avoid excessive notation we write E=¢, Tr, and
M(- -) instead of =6, Try,, and A (- - +), respectively.

Assume now that

E={p}Pi|--- | Pr{q} M
holds for some program P, || - - - || P, and assertions p and q. Let hj, ..., h, be some
fresh variables not occuring in p, P, ..., P,, or q. We now transform each P;

into another program P} by replacing each command of the form P;2x (P;!?) by
(Pi?x; hi = hio{x, j, i)} ({(Pj!t; hi == hio(t, i, j})). This transformation defines a
bracketing on PT|---| Px.

Let x be the list of all variables of Py --- | P,, and let Z be a list of some fresh
variables of the same length as X. Let p’ be defined by

pPEpANh=()YNee Ahp=(YAx=1
We now prove
Tr = {p"}PY| - - | P2 {q}. @

Given a history A, let [h]; denote the subsequence of h consisting of all triples
(a, k, 1) such that k = i or I = i. Intuitively, [A]; is the part of h which relates
to communications involving process P;. We shall call [h]; a projection of k on
process P;.

We say that a number y codes a history h = (ay, i1, j1)°- - - o(an, ir, Jr)if y =
(Kay, i, 1)y ooy (@ry Bny i)

Let I be a formula of L, and let F= {hy, ..., hy, Z} be the set of its free variables

Proof System for Communicating Sequential Processes 209

and such that for all states o the following holds:

FIl(o) <> 30’7, 8%, ..., Su, k, h[Ep'(r), (PY||-- - | P, 1) >} (Si---||Sn,a"),
o’(u)=o(u)forue & S| - - - || S, is admissible,
andfori=1,...,n,o(h;)codes[h]].

Now let R be a subprogram of P} (1 < i < n). Let pre(R) and post(R) be the
assertions whose free variables are those of P} and such that for all states o the
following hold:

Fpre(R)(o) «> o', 7, 81, ..., S», k, W[Fp'(7), (PT||--- || PX, 1) =%
(Sif|++- | S, 0'), 0" | P¥ =0} P,
S is before(R, PY), and o(h;) codes [A]:],

FEpost(R)(0) <> o', 7, S1, ..., Sh, k, h[E=p’(7), (PY| -« - || Px, 7) =
(Si" e "S;I, 0’), O" r Pi* =0 [‘ Pi*,
S is after(R, P¥), and o(h;) codes [A]:]

Let us call a computation of P || --- || P good if it starts in a state satisfying p’.

Informally speaking, /(o) holds if 6’ can be reached by a good computation at the
end of which each process is outside a bracketed section. Here o’ is a state which
agrees with ¢ on all auxiliary variables.

Informally speaking, pre(R)(o) (or post(R)(o)) holds if o’ can be reached by a good
computation at the end of which process P} is about to execute R (or has just
terminated an execution of R). Here o’ is a state which agrees with o on all variables
of P*.

From now on the predicates I, pre(R), and post(R) are always meant to be the
ones defined above.

It can be shown that the above defined global invariant I and pre- and postasser-
tions can be defined in L. The proof is similar to the one given in Section 4 of [1] and
is omitted here.

We now show that the above global invariant I and the pre- and postassertions
satisfy the conditions listed in the premise of the combined rule defined in the
previous section, where for all i, p; is pre(P}*) and g; is post(P*).

To check the verification conditions is a straightforward matter and we leave it to
the reader. The proof of cooperation clauses is much less trivial, and the rest of this
section is devoted to their proof. We shall first need the following definition.

Let o be a state, and let {iy, ..., i;} be a subset of {1, ..., n}. We call a list of
component programs R, , ..., Ry, (0, i, ..., i;)-reachable if for some programs R; for
je{l,...,n} = {i, ..., i1} and o’ such that o’(u) = o(u) for u € Var(P}, ..., P}),
(PY|| -~ | PX, 7) =% (S1]|-+- | Sn, 0’), where S; = before(R:, P}) for some history
h, k = 0, and state r such that =p’(r). If, additionally, o'(u) = o(u) for u € #, we say
that R, ..., Ry, is (I, o, iy, ..., i1)-reachable. Note that for R a subprogram of P},
F=pre(R)(c) holds iff R is (o, i)-reachable. Also, if R;, ..., R, is (o, &, ..., ir)-
reachable, then forj € {i, ..., i), Fpre(R;)(o) holds.

The following lemma is crucial for the proof of the completeness theorem.

MERGING LEMMA. Suppose that for j=1, ..., I, R, is either an I/ O statement or
E. If each Ri is (o, ij)-reachable for j = 1, ..., | and EI(0), then R, ..., Ry is
I, 0,0, ..., i)-reachable.

The proof of the lemma is given in the appendix.

210 KRZYSZTOF R. APT

Now let (R;) and (Rz) be matching bracketed sections of P¥and P}, respectively.
Without loss of generality assume that R; contains an input statement and R; contains
an output statement. We prove

={pre(Ry) A pre(Re) A I} Ri|| Re{post(Ri) A post(Rz) N 1 }. (3)
Assume
E=(pre(Ri) N pre(Rz) N I)(o) ©)

for some state o. By the definition of the pre-assertions and the merging lemma there
exist states o’, 7, history k, k = 0, and programs S1, ..., S such that o’(«) = o(u) for
u € #U Var(P}, Pf) and

=p'(7), ()
(PE||---I1PX, 7y =E(St]| -+« [|Sh, o), (6)

where S/ is before(Ri, P}) and Sj is before(R;, P}). Suppose now that ¢, €
M(R,|| R2)(0). Let % be such that oi(u) = o1(u) for u € F U Var(P}, P}) and
o1(u) = o’(u) for other variables. Then o1 € #(R:| Rz)(c’). Thus for some value a
and k; > 0,

(Sill -+~ Sn, 0’y =2 (ST |-+ | SK, o1},)

where S/ is after(Ri, P}), S/ is after(Rz, P}), and for k # i, j, S¥ is Si. Together,
(6) and (7) imply

(PE| - IPX, 7) =R357" (ST -+ | SK, o).
By the definition of the pre- and postassertions and I we thus get
E(post(R1) N post(Rz) A I)(a1),

and we can replace here o1 by a:. This proves (3).
The next step in the proof consists of showing that

Tr 1 {pre(Ri) A pre(Rz) A I'}R:|| Re{post(R1) N\ post(R2) A 1}. ®

Expression (8) is a consequence of (3) and the following lemma, on whose proof we
now concentrate.

LemMa 3. For any matching bracketed sections (R\) and (R:), if
E{p}R1| Re{q}, then Tr b1 { p}R:1|| Ro{q}.

ProoF. Suppose that ={p}R:||Re{q} holds. Assume that R; is of the form
S1; @; Sz and Ro is of the form S3; @; Sy, where « and & are matching I/0 commands.
Now let p; and p; be assertions such that for any state o,

FEpi(o) < Ir[M(Sy; S3)(1) = 0 N F=p(1)]
and
F=pa(0) © Y[M(S2; Si)(0) = 7 — Fq(7)].

One can show that p; and p; exist.

By the definition of p; and p. both ={ p}S:; S3{ p1} and ={ p2}Ss; S«{q} bold. By
a slightly refined version of the completeness results proved in [3] and [12] (adapted

Proof System for Communicating Sequential Processes 211

to our syntax) both

Tr 1 {p}Sy; Ss{p1} and Tr b1 { p2} S2; Se{q)} ®

hold.

An observant reader will note that we intend to apply the formation rule. A quick
look at the list of premises of the formation rule reveals that we should now prove

Tr 1 { pi}]| a{pz}. (10)
We shall first prove

E{p}alla{p:}. (1D

Assume the contrary. For some states ¢ and 7 Fpi(o), 7 € #(a|a)(s) and
H#p2(7). By the definition of pi, for some state 71, 0 € #(Sy; S3)(r1) and E=p(r1). By
the definition of p., for some state 73, 7o € M(S2; Ss)(1) and H g(72).

By the definition of .# we now have 2 € #(R: || R2)(r1). Since also E=p(r1) and we
assumed that ={p}R:| R:{q} holds, we get =q(r2), which gives the contradiction.
This proves (11).

We now prove (10). Assume « is of the form P;?x and a is of the form P;!r.
According to our semantics the effect of executing o | @ is the same as performing the
assignment x := t. Thus (11) states that ={ p1}x = 1{ p2}.

It is now useful to recall Floyd’s forward assignment axiom (see [4]),

{pitx =t{3y[pily/x] A x =t[y/x]]}.

It is a well-known fact that Floyd’s axiom is valid and together with the consequence
rule forms a complete reasoning system for the assignment statement. This implies

FAylply/x] A x=tly/x]] - pa

By the definition of (the fragment of) CSP, processes are disjoint, so x does not
occur in ¢. Hence we have

FIypily/x] A\ x =t — p. (12)

By the preservation axiom,

Tr =7 (3y puly/xDala{3y pily/x1}.
By the communication axiom,
Tr b7 {true}a|a{x = t};
so by the conjunction rule,
Tr =r {3y ply/x]r el a{3y pily/x] A x = t}. (13)

Obviously p; — 3y pi[y/x]; so (12) and (13) imply (10).
Applying now the formation rule, we get by (9) and (10), Tr r {p}R:|| R2{q}.
This concludes the proof of Lemma 3. [

Remark. One might wonder why in [2] we did not adopt in the proof system a
communication axiom a la Floyd’s assignment axiom and used the communication
axiom A5 and the preservation axiom instead. The answer is that we felt that
communication axiom AS captures the meaning of the communication in a more
intuitive way than any of the assignment axioms. A communication has two (proof-
theoretic) aspects: first, it is a special case (thanks to the disjointness proviso) of the

212 KRZYSZTOF R. APT

assignment which is exactly captured by the communication axiom; second, it enjoys
the preservation property (of course satisfied by the other programs, as well) which
is exactly captured by the preservation axiom.

Having proved Lemma 3, we justified (8). We can thus apply the combined rule
and we get

Tr b7 {pre(P¥) A -+ A pre(Px) AI}PT|
-+ | PX{post(P¥) A - -+ A post(Pr) N T}.
To prove (2), it is now sufficient to show
Ep’ — pre(PY) A --- Apre(P¥) N1 (14)
and
Epost(Pf) A -+« Apost(PF) NI — gq. (15)

The proof of (14) is a trivial consequence of the fact that by the definition of the
“—" relation we have

(P||--- | Px, o) =5 (PY|--- || PX, o).
To prove (15), suppose now that for some state o,
E(post(PT) A -+ - A post(Pr) A I)(o).

By the definition of the postassertions and the Merging Lemma there exists a state
 such that =p(r) and for some history & and k = 0,

(PE]--- 1P, m) =k (E]-:- | E, o).
n times

It is easy to see that (1) implies

={p}Pi|---IIPx{q};

so by the above, F=¢q(0), which proves (15).

This proves (2). Applying the rule of auxiliary variables, we now obtain
Tr b1 {p'}P1| - - - | Po{q}. Finally, applying the substitution rule, we get Tr -
{p}P1| --- || Pr{q}. But the proof systems T and 7" are equivalent; so we proved
Tr 7 {p}Pi1| - - - | Pr{q}, as desired.

The other cases in the proof of the Completeness Theorem are all dealt with in the
standard way. This concludes the proof of the Completeness Theorem. O

7. Total Correctness

In this section we concentrate on the issue of total correctness of the CSP programs
we consider. Informally speaking, we say that a program P is fotally correct under J
with respect to assertions p and q (|[Fs{ p}P{q}) if any computation of P starting in a
state satisfying p successfully terminates and its terminating state satisfies ¢q. To
express it formally, we shall rather need a formulation by contraposition, which can
be phrased as follows: |=s{ p} P{q} holds if

(1) whenever a computation of P starting in a state satisfying p terminates, then the
state in which it terminates satisfies ¢ (i.e., =s{ p} P{¢q} holds);

(2) no computation of P starting in a state satisfying p diverges;

(3) no computation of P starting in a state satisfying p becomes blocked.

We now define formally when a computation diverges or becomes blocked.

Proof System for Communicating Sequential Processes 213
Definition. Let o be a state and P a parallel program.

(i) We say that P can diverge from o iff there exists an infinite sequence (P;, ;)
(i=0,1,...)such that for some histories #; i = 0, 1, .. .),

(P, 0) = (Po, go) =70 (Py, 61) =1 Py, 03) =42 « .+

(ii)) We say that P can become blocked from o if there exists a finite sequence
(P;,0:) i=0,1,..., k) such that

(a) for some histories h; (i=0,1,..., k — 1),

(P, a) = (Po, 00) > (Py, o) = -+ 511 (Py, 04),
(®) Pust E|-:-|E

n times

(c) for no (Pg+1, 0x+1) and history hx, (Pr, 0x) =7 (Pre1, Orr1).

We can introduce the following definition.
Definition. |=,{p}P{q} iff

M) Es{p}P{q},
(2) Yo[~sp(0) — P cannot diverge from o],
(3) VYo[Fsp(0) — P cannot become blocked from o].

We now modify our proof system so that it can be used to prove total correctness
of the CSP programs. The first two properties listed above can be proved together,
provided one modifies appropriately the proof rule dealing with the repetitive
command. We replace the proof rule R2 by the following rule.

R2." Repetitive command

p0) = A1 7y, p(n + 1) > Vi by, {p(n + DA BIR{p()}j=1,...m
{3npm)}=[0@G =1, ..., m) b — R;1{ p(0)} .

Here p(n) is an assertion with a free variable n which does not appear in the
programs considered and ranges over natural numbers.

This proof rule is motivated by a corresponding proof rule dealing with while-
loops, introduced in [6].

To prove the third property (freedom of blocking), we first modify the proof rule
dealing with the alternative command. We replace the proof rule R1 by the following
proof rule.

R1.” Alternative command

p— Vb, {p Ab}Ri{q}j-1..m
{(POG=1,...,mb— R1{q}

The additional premise rules out the possibility of abortion—a situation in which
all Boolean guards of an alternative construct evaluate to false.

Another possibility of blocking is by deadlock. By a deadlock we mean here a
situation in which at least one process did not terminate its execution, each process
which did not terminate waits for a communication, and no process can proceed.
This issue was dealt with in [2, Sec. 4], and we can readily adopt the same approach
here. The only difference is that we disallow here the convention of exiting an I/0

214 KRZYSZTOF R. APT

guarded loop owing to a termination of other processes. Consequently, in contrast to
[2], no further changes in the proof system are needed.

However, to deal properly with the I/0O guarded selection command omitted here,
one can no longer rely on the equivalence mentioned in Section 2, as it does not hold
for total correctness. A correct solution would be to modify appropriately the
semantics and reintroduce the I/O guarded selection rule defined in [2].

Theorem 1 from [2, Sec. 4] provides a sufficient condition for proving deadlock
freedom. We refer the reader there for further details.

It should be stressed that the notion of blocking used in this paper differs from the
one used in [2] in that here we consider abortion as a special case of blocking.

We can summarize the situation as follows. We presented here a proof system in
which total correctness of the CSP programs can be proved. We also provided a
semantic definition of total correctness. The next step would be to prove soundness
and completeness in an appropriate sense of this system. The appropriate notions
would be those of arithmetical soundness and completeness introduced in [6]. We
believe that the desired proofs can be obtained by an appropriate modification of the
proofs provided in this paper.

Appendix
MERGING LEMMA. Suppose that for j=1, ..., I, R; is either an I/ O statement or
E. If each R, is (o, ij)-reachable for j = 1, ..., I and =1(o) holds, then R;,, ..., R;, is

{, o, i, . .., i1)-reachable.

ProoF. Throughout the proof the predicate I refers to the definition from
Section 6.

To understand better the proof of the Merging Lemma, it is useful to provide an
informal interpretation of the claim. The state o fixes the values of the histories 4;
(i=1,..., n). The assumption /(o) implies that the 4;’s are projections of a history
h of a single computation. For each j = 1, ..., [h;; is also a projection of a history
of a computation leading to R;,. We now wish to show the existence of a single
computation ¢ with history 4 which leads to R;, ..., R;, simultaneously. This
computation ¢ will be an appropriate interleaving of the considered computations.
We also need to ensure that c leads to a state satisfying /. The last claim holds due
to the fact that the R;’s are either E or just before a bracketed section, so ¢ leads to
an admissible program.

We must first formalize a few notions. By a computation we mean a finite or
infinite sequence of pairs (S, 6;)i—1p,.. such that for each i, (i, o) =% (Sis1, 0is1)
for some 4. Each elementary step

d= (8] ---||Sn, 0:) =1 (S| - -+ || S, 0is1)

in such a computation is associated with one or two (in the case of communication)
processes which progressed in execution. We say that this elementary step was
performed by any such process. If it was performed by the jth process, then de-
fine [(Sis, 0in1)]; = (S, 6is1 | PJ), where Siuy = Si||---||.S. and otherwise
[(8i+1, 0i41)] is the empty sequence. Given now a computation ¢ = (S, 6,);=12,.., We
define [c]; to be the sequence [(S;, 0;)], fori=2,3,... .

Nowlet4 = {i}, ..., #}. Let ¢ denote a computation whose existence is guaranteed
by the fact that =1(o), and let ¢;, for all j € 4, denote the corresponding computation
whose existence is guaranteed by the assumption of the (o, j)-reachability of R,. All

Proof System for Communicating Sequential Processes 215
these computations start in the same state o defined by

To(x:) = 7o(z:) = 0(2:) for i=1,...,k,
To(h:) = () for i=1,...,n
To(y) = o(p) for all other variables.

Note that =p’(70).

We now prove that there exists a computation ¢’ starting in the state 7o such that
for j€ A[c']; = [¢;];and for j & A4, [¢']; = [c];. These properties of ¢’ clearly imply
that ¢’ is a computation ensuring the (Z, o, i1, ..., i;)-reachability of R, ..., R,

The proof of the claim proceeds by induction on the length || of the history A of
the computation c.

If | k| = 0, then by the construction of P{| - - - || P% and the definition of / we have
o(h:;)=() fori=1,..., n;so in computations ¢; for j € 4 and ¢, no communication
between processes took place. The desired computation can now be easily constructed,
thanks to the assumption of disjointness of the processes. It is obtained from a
concatenation of [¢;]; for j € 4 and [c] for j & A, appropriately extended to a
computation sequence.

Assume now that | h| > 0. For some history /4, value g, and h, L € {1, ..., n}, we
have h = hi°(a, §,, ;). For some computations di and dz, ¢ = di°ds, where d, has
history h; and ends in an admissible program and 4, has history (a, l, /2). Let oo be
the state to which di leads. By the definition of I we have =I(go). We can assume
that all steps in d» were performed by the /ist and /znd process. This implies that for
Jj# I, I, we have oo | P} = o | P}. There are now four cases to consider.

Case . L1 & A4, l; & A. For j € A we have j # L, k; so by the definition, R; is
(00, j)-reachable with the computation ¢;. Also, d; ensures that FI(co). By the
inductive assumption there exists a computation 4" which starts in 7, and such that

@) forje€ 4,[d']; = [¢;]),
(i) forj & 4, [d']; = [d];.

In particular, [d"],, = [d:], and [d'];, = [d1];,. Thus both 4" and 4, reach the same
point and state in the hst and lnd processes. It implies that ¢’ = d'od; is a
computation, and it is clear that it is the required one.

Case I. L € 4, I, ¢ A. By the construction of PY|---|| Py we have o(h,) =
oo(h1)°(a, h, I;), and also o(h;) codes[h’],, where A’ is the history of the computation
¢, This means that in the computation c;, the last communication performed by the
Iist process was with the lond process.

For some computations ds and d; we have ¢;, = dsod,, where d, is the computation
which starts with the execution of the abovementioned communication. Let o; be the
state to which ds leads, and let R’ be the 1/O statement of the /;st process to which
ds leads. By definition, R’ is (01, I;)-reachable. We can assume that all steps in ds
were executed by the /;st and /;nd process.

Now let ¢” be such that ¢” | P¥ =01 | P} fori=5h, » and ¢”(x) = o(x) for other
variables. Then for j € 4 — {1}, R;is (¢”, j)-reachable with the computation ¢;, and
R’ is (6”7, I)-reachable with the computation ds. Also, di ensures that =1(c”) holds.

To establish the last claim, observe first that o” (k) = o(hi) = go(:) for i # L, Lo,
since in the computation d; (leading from oo to o), all steps were performed by P7,
and P},. By definition, ¢”(h:) = o1(h;) for i= 4, l». But 61(h;) = oo(h;) for i =1, I,
since o(h) = oo(hi)o(a, L, k) and o(h;) = ai(h:)e(a, L, L). So ¢”(u) = oo(u) for
ue F= {hy,..., hs, 7}, as the values of the variables from z do not change in the

216 KRZYSZTOF R. APT

considered computations. But =1(0o) and all free variables of I are in &, so =I(¢”)
as desired.

Now by the inductive hypothesis concerning the computations ¢; for j €
A — {l}, ds, and d, there exists a computation d’ which starts in 7o and such that

() forje A = (b}, [d']; = [e]55
(i) [, = [ds]u;
(iii) forj & 4, [d'); = [d]).

Now let ¢’ be a concatenation of d” with the elementary step consisting of the
considered communication between PY, and P and [dz],, and [d4];,, appropriately
extended to a computation sequence. It is clear that ¢’ is the desired computation.

The case when I; & A and I; & A is analogous, and the case when I}, , € A4 is
treated in a similar way and left to the reader. [J

ACKNOWLEDGMENTS. [would like to thank N. Francez and W. P. de Roever for
helpful and stimulating discussions which took place while working on [2]. These
discussions avoided deadlock and were at the source of this paper. I am very grateful
to both referees of the paper for their remarkably precise and useful reports, which
significantly influenced the final version of the paper.

REFERENCES

1. ApT, K.R. Recursive assertions and parallel programs. Acta Inf. 15 (1981), 219-232.

2. ApT, K.R., FRANCEZ, N., AND DE ROEVER, W.P. A proof system for communicating sequential
processes. Trans. Prog. Lang. Syst. 2,3 (July 1980), 359-385.

3. Cook, S.A. Soundness and completeness of an axiom system for program verification. SIAM J.
Comput. 7 (1978), 70-90.

4. FLoyp, R.W. Assigning meanings to programs. In Proc. Symp. in Applied Mathematics 19, American
Mathematical Society, Providence, R.L, 1967, pp. 19-31.

5. FRaNCEZ, N, HOARE, C.A.R., LEHMANN, D.J., AND DE ROEVER, W.P. Semantics for nondeterminism,
concurrency and communication. J. Comput. Syst. Sci. 19 (1979), 290-308.

6. Harer, D. First-order dynamic logic. Lecture Notes in Computer Science 68, Springer, New York,
1979.

7. Henngssy, M.C.B., AND PLOTKIN, G.D. Full abstraction for a simple programming language. In
Proc. 8th Symp. on Mathematical Foundations of Computer Science, Lecture Notes in Computer
Science 74, Springer, New York, 1979, pp. 108-120.

. Hoarg, C.A.R. Communicating sequential processes. Commun. ACM 21, 8 (Aug. 1978), 666-677.
9. LamporT, L. Proving the correctness of multiprocess programs. IEEE Trans. Softw. Eng. 3 (1977),

125-143.

10. LeviN, G.M. Proof rules for communicating sequential processes. Ph.D. Dissertation, Computer
Science Dep., Cornell Univ., Ithaca, N.Y., 1980.

11. OwiIcky, S. Axiomatic proof techniques for parallel programs. Ph.D. Dissertation, Computer Science
Dep., Cornell Univ., Ithaca, N.Y., 1975.

12. Owickl, S. A consistent and complete deductive system for verification of paralle]l programs. Proc.
8th Ann. ACM Symp. on Theory of Computing, Hershey, Pa., 1976, pp. 73-86.

13. Owicky, S, AND Grigs, D. Verifying properties of parallel programs: An axiomatic approach.
Commun. ACM 19, 5 (May 1976), 279-285.

14. Owicky, S., AND GRies, D. An axiomatic proof technique for parallel programs. Acta Inf. 6 (1976),
319-340.

15. SHOENFIELD, J.R. Mathematical Logic. Addison-Wesley, Reading, Mass., 1967.

e

RECEIVED APRIL 1980; REVISED FEBRUARY 1982; ACCEPTED MARCH 1982

Journal of the Association for Computing Machinery, Vol. 30, No. 1, January 1983.

